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Abstract

A heat pipe is a self-contained structure which achieves very

high thermal conductance by means of two-phase fluid flow with
capillary cireulation. A quantitative engineering theory for the

design and performance analysis of heat pipes is given.
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1l. Introduction

The "Grover Heat Pipe"l is a self-contained engineering structure
which exhibits a thermal conductance greatly in excess of that which
could be obtained by the use of a homogeneous plece of any known
metal. This property is achieved within the containing envelope
by the evaporation of a liquid, transport of the vapor to another
part of the container, condensation of the vapor and return of the
condensate to the evaporator through a wick of suitable capillary
structure. The quantitative engineering theory for the design and
performance analysis of heat pipes, alluded to but not elaborated

in the original description of these devices, is supplied herein.

There are obviously many practical uses for a structure of
extraordinarily large thermsl conductance. The heat pipe principle
is indeed applicable over a very wide range of sizes, shapes,
temperatures and materials. Unlike solid heat conductors, however,
heat pipes cannot be characterized by a single property (an "equivalent
thermal conductivity", say), since the behavior and limitations of a
heat pipe are largely integral properties of fhe device as a whole.
Furthermore, even if the size, shape, temperature and materials of a
heat pipe are specified, the mass, vapor volume fraction, thermal
conductance and maximum heat flux are individually (through not
independently) under the control of the designer. The particular

application will determine which allowed combination of these properties

is most desirable.




At the present time, certain quantitative features of heat pipe
tehavior have not in fact been verified experimentally, though they
can be predicted with some confidence. A few properties cannot yet

even be treated with any conviction.

It is impractical to furnish a sufficient number of specific
calculations to be generally useful. This report is intended simply
to offer some initial orientation in the quantitative principles
of heat pipes, and to serve as a stimulus for further experimentation,

applications, and improvement of the theory.

2. General heat pipe structure

The advantages of heat pipes are best realized when they are
long and thin, that is, take the form of long cylinders or extended
thin planar structures. For definiteness the discussion here will
be confined to right circular cylinders of large length-to-diameter
ratio. The course of the analysis for other shapes will be evident,
though not always straightforward in detail. As shown in Fig. 1,
such a heat pipe consists of a containing tube of length £ with outer
radius rp, an annular capillary structure saturated with a wetting

liouid, with outer radius L and a vapor space of radius r,e

Since heat is added to and removed from the heat pipe through
the container wall by ordinary thermal conduction, this should be
as thin as other considerations permit, in order to minimize radial

temperature differences. The container wall must of course sustain




the difference between the internal and the ambient pressure. Heat
pipes became effective at internal vapor pressures as low as a
hundreth of an atmosphere, and improve with increasing pressure. It
will ordinarily be possible nearly to match the ambient pressure by
choice of a working fluid with an appropriate vapor pressure at the
desired operating temperature. The question of the long-term
compatibility of the container with the working fluid might determine
its thickness, or the container might even be & structural element
with other functions in the larger device of which the heat pipe is

a part,

The details of the wick admit of wide variation. It need not
be disposed against the inside surface of the container as shown,
though this will ordinarily be the best place for it for several
reasons, Since evaporation and condensation take place at the vapor-
liquid interface, this disposition of the wick allows the necessary
radial'heat transfer to occur through the medium of highest thermal
conductance and thus minimizes radial temperature differences. This
also makes the hydraulic diameter of the vapor space as large as
possible which minimizes axial pressure gradients in the flowing
vapor. The wick may be a woven cloth, roving, felt, sinter, etec.,
or even simply slots or grooves in the container wall.2 The capillary
structure will be characterized by its mean pore radius, permesbility
and liguid volume fraction. It is desirable but possibly not essential

that the heat pipe be self-priming; that is, if the requisite amount
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of liguid is.placed anywhere in the container it spontaneously
saturates the entire wick. This is accomplished by having sufficiently

small capillary pore size throughout the wick.

The working fluid must wet the wick material; that is, the
contact angle (the angle formed by a wedge of liguid in equilibrium
contact with the solid substrate) must be less than n/2. ¥While not
essential, it is desirable that the fluid also wet the container
wall as this improves the heat transfer. There is little penalty
for a modest excess of liguld over the amount required to saturate
the wick. A deficiency on the other hand can be expected to reduce
the maximum heat transport by reducing the effective wick volume

in the evaporator section of the heat pipe.

3. Static condition

Suppose, first, that there is no heat addition or removal and
that the pipe is at eruilibrium with its length, z, at an angle ¢
to a gravitational field of acceleration, g. The pressure dis-
tribution in the liouid phase, pz(z), obeys the usual hydrostatic

law for an incompressible fluid:
= p (0) + i
p,(z) =p,00) +pgsing (1)
vhere Py is the density of the liquid. The pressure in the vapor
phase pv(z), assumed an ideal gas, has a Boltzmann distribution in

the gravitational field, but the variation of pressure is entirely

negligible and we may take the pressure to be constant. The inter-
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face between the liquid in the capillary structure and the adjacent
vapor must assume a local radius of curvature, r(z), so that surface
tension, Y , supports the difference in pressure between the liquid

and the vapor. Thus

p,(2) - » (z) = &y (2)

Now the vapor pressure of the liquid depends not only on the
temperature T, but also samewhat on the radius of curvature of the
liquid-vapor interface, r., This dependence of the vapor pressure

-2t

p(T,r) = p(T,=)e ~

p=p (T,r), is given by

where M is the molecular weight of the vapor and R is the universal
gas constant. The quantity QYM/prT typically has order of magnitude
107" cm or less, and since the capillary pore sizes of practical
interest exceed 1o‘h em, we may neglect this dependence and take

p = p(T) only. In the present equilibrium case the vapor pressure
of the liquid must be equal to the pressure in the adjacent vapor,

p(T) = p_.

In a capillary structure of minimum pore radius Tos containing
a liquid for which the contact angle is 8 , the smallest radius of
curvature that the meniscus can achieve is rcsece . The liquid-vapor
interface under some circumstances may be at the surface of the
capillary structure or even outside it, so the maximum radius of

curvature may be at least as large as the radius of the vapor space.




If enough liquid is present to form a pool in which the gravitational
force dominates surface tension, then the radius of curvature of the
interface may be essentially infinite. Thus r must lie in the range:
<n>1'2r°sece. Using these limiting values in (2) and combining with
(1) yields for the maximum height of capillary rise, z  sing , the

well-known result

_ 2ycos®
Z xS0 = b E7 (3)

In order to work properly the length of the heat pipe should not

exceed this zma.x'

L, Start-up
The quantitative details of the start-up transient are of minor

interest. We need describe only qualitatively how it is accomplished

quite automatically.

Beginning with the equilibrium condition for which r(z)>rcsec6,
we consider then what happens when heat is added to the pipe in the
evaporator section, 0O€ z$ 4 . The temperature and consequently the
vepor pressure of the liquid rises in the evaporator and falls in the
condenser. This gives rise to a pressure difference in the vapor
which drives it from the evaporator to the condenser, The driving
pressure difference in the vepor is samewhat less than the difference

of the liquid vapor pressures, since, in order to maintain continued

«l2-



evaporation the vapor pressure of the liquid in the evaporator must
exceed the pressure in the adjacent vapor. Similarly, in order to
continue condensing, the pressure in the condenser vapor must exceed
the vapor pressure of the adjacent liquid. As a result of evaporation
the liquid-vapor interface in the evaporator recedes somewhat into the
capillary structure and the radius of curvature of the meniscus
consequently decreases there. Condensation of vapor increases the
radius of curvature of the meniscus in the condenser, if it is not
already essentially infinite. Thus, according to (2), the pressure
distribution in the liquid changes in the direction which drives
liquid from the condenser to the evaporator. The resulting distribution

of pressures is shown in Fig., 2.

The starting transient is somewhat more complex when the material
which will become the working fluid is below its melting point initially.
As heat is added to the evaporator section, the material there is
brought to its melting temperature and above, and vapor is formed
which moves down the vapor duct to the condenser section. Material
adjacent to the evaporator section is heated to the melting point
partly by the condensation of vapor on its surface and partly by axial
conduction of heat along the container wall and the wick., The melt
zone thus moves out into the condenser section. 1In order for the
startup to fail, liquid must continually be depleted by evaporation

faster than it becomes available by melting, until all liquid formed
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is deposited as solid in the condenser section. In a large number
of tests of heat pipes of various kinds, successful startup appears
to be a fairly general rule as long as there are no unexpected

malformations of the wick.

5. Steady-state heat pipe regime

We consider now the quantitative dynamics of the long cylindrical
heat pipe in steady-state operation., We shall derive equations which
determine the distribution of energy flow, material flow, temperature
and pressure within a heat pipe when it is placed in a specified
external thermal envirorment. The basic working relations are obtained
from the general equations of conservation of mass, momentum and
energy by taking averages over the radial cross section of the pipe

and meking simplifying assumptions.

The conservation of mass of a fluid of density p(z,r) in steady

flow with velocity Vv(z,r) is expressed by
v.pw_r’ =0 (%)

Since there is no flow normel to the outer boundaries of the liquid
region, the velocity components v, and Vo satisfy the boundary

conditions

VZ(O,!‘) = VZ(Z,I‘) = Vr(z’rw) =0 (5)

The total axial flow of vapor, ﬁv , and of liquid, ﬁz , at axial

position z are respectively

=14




r r
. v . W
mv(z) = j‘o p(z,r) v, (z,r) 2rrar; mz(z) = ‘]‘.rv p(z,r)vz(z,r)2nrdr (6)
Applying Gauss' theorem to (4) in a cylindrical region between

0 and z and inside r_, and using (5) and (6), yields
i, (2) + i (2) = 0 (7)
The momentum equation for steady incompressible flow is

Up = p8 + N7 - pv.WW (8)

where p is the pressure and 7 the coefficient of viscosity. The
implications of this equation for the liquid and vapor flows are
quite different.

As an gpproximation valid for the flow of liquid through the
porous structure of the wick we now obtain a version of Darcy's law.
Consider the average of (8) over a small area with dimensions small
compared to the thickness of the wick but large compared to the
average radius of a capillary pore, . Since (?r’) » the area average
'\?, includes regions occupied by solid wick structure, the average
flow velocity within the pores is (¥) /e, where e is the fraction
of wick volume occupied by liquid. Since the fluid veloeity is
of order (V) /e within a capillary passage and vanishes on the pore
surface, then in order of magnitude, {p zv.%)a- e, (\'}’ ) 2/erc and
(N zV.V—v’) Sl z(?r’) /eri . The ratio of magnitudes of these two

terms is Just the Reynold's number for the average flow in a pore,
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p zvr/Tl K vhich will be small compared to unity in all cases of
present interest., The final inertial term in (8) is therefore

neglected and we have

D, = 0.2 - bﬂ!,(v_))/eri (9)

where b 1s a dimensionless constant depending on the detailed
geametry of the capillary structure. For non-connected parallel
cylindrical pores b ~ = 8, For realistic capillary structures,
with tortuous and interconnected pores, b ~ 10-20,

The average radial and axial pressure gradients will be inversely
proportional to the flow areas in the radial and axial directions
respectively., For long thin pipes, that is as long as rv,e,»raw s
the radial pressure gradient will be negligible, and we may assume
that both the flow velocity and pressure in the liquid depend only
on z, Thus specializing (9) to the axial direction and using the

definition of the total liquid mass flow, (6), we have

o7l g ,(2)

P
Th=epoing- (10)

5 2. 2
TT(IW - rv)p)@exc

The dynamics of the vapor flow is decidedly more complex, partly
because in general an equation like (10) relating the local pressure
gradient with the local mass flow does not even exist, and partly

because of the inertial term in (8) is often not negligible in cases
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of interest. The vapor flow in the evaporator and condenser of a heat
Pipe is dynamically identical to pipe flow with injection or suction
through a porous wall. This problem has been studied by Yuan and
Finkelstein3 for cylindrical pipes, and by Knight and MbInteeru for
flow between plane parallel walls. We summarize and quote the partial

results of these authors.

Both analyses assume incompressible laminar flow and uniform
injection or suction. Several regimes must be distinguished, depending
on the magnitude of a Reynolds number, Rr’ based on the radial flow
velocity at the channel wall, v _ = Vf(z,rv), the channel radius, T

the vapor density, Py and viscosity, nv:

pYr Vv dm
R = . Yvr _ 1 v (11)
T nv 2nﬂv dz

Note that Rr is positive for evaporation and negativé for condensation.
For all values of Rr solutions are found for which the axial velocity
profiles are symmetric about the channel axis, with the profiles at
different axial stations differing only by a velocity scale factor
proportional to the distange from the axial origin of the flow.
For'lf&j4§1” viscous effects dominate and the axial velocity profile
is close to the usual parabolic shape for Poiseuille flow. The
pressure decreases in the direction of flow, with a gradient larger
than tﬁ%t of Poiseuille flow in the case of evaporation, and smaller

if vapor is condensing. 1In this regime the flow properties can
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be calculated by a straightforward perturbation expension in powers

of the Reynolds number. The resulting pressure gradient is given

approximately by3

dp,, 81, m, 3 1 2
Tz— = - (1+E Rr"—z—,'7' Rr+00') (12)
TPty

This expression is derived on the assumption that Rr as defined in
(11) is a constant, independent of z. This will often be the case

in practical applications of heat pipes.

When Ler is large the evaporation and condensation cases
becames qualitatively different. Knight and McInteerh show this in
theory for flow between plene parallel walls., Wageman and Guevara5
have verified the following description experimentally for cylindrical
pipe flow. For high evaporation rates, Rr§> 1. The radial dependence
of the velocity is not parabolic but is proportional to cos'g (-%})2.
The pressure decreases in the direction of flow., The flow prope?iies
can be calculated by a perturbation expansion in powers of l/Rr.

With high condensation rates on the other hand, the flow is of
boundary layer type. The axial velocity is constant across most of
the channel, with the transition to zero velocity occurring in a thin
layer at the wall, The pressure increases in the direction of fluid

motion as & consequence of partial dynamic recovery in the decelerating

2
flow. In this regime only the limiting behavior can at present be

described analytically, as perturbation expansions cannot be made
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self-consistently. 1In either limit, er|—9>w , the pressure gradient

is given by

dp sm dm,
v - - v v (13)
az 1N dz
o r
vV

where the difference in the flows enters only in the numerical
coefficients: for evaporation, s = 1; for condensation, s = 11\/11'2 .
As vefore, (13) is strictly correct only for constant R ..

Nothing appears to be known sbout the stability of these flows,
so that nothing definite can be said about the onset of turbulence.
The transition criterion as well as the properties of the fully
developed turbulent flow will depend also on a Reynolds number, Rz’

based on the mean axial velocity1Fz,

p r‘Vé m
R =-—YXY¥Y2z _ v : (1)

z ﬂv e
We might, however, use (12) or (13), as appropriate, without regard
to the problem of turbulence, for lack of better information, except
for one case of practical interest where we may proceed on a sounder
basis., If the evaporator and condenser of a heat pipe are comnmected
by a long insulated section, then, since the returning condensate
will be heated by the outgoing vapor, there will be a small but
ordinarily negligible net condensation along the insulated part so
that R 0. If RZ'< 1000, then the expression (12) for laminar flow

is appropriate, If, however, Rz > 1000, and the length exceeds, say
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50 r s then we should expect fully developed turbulent flow. In this

case we should use instead of (12), the empirical Blasius law

2
L
dz " 3 RZ/ (15)
Pv'y

To complete the discussion of the flow dynamics we must state
the connections between the vapor and liquid pressures and the
vapor and liquid mass flows. As in the equilibrium case the inter-
face meniscus assumes a radius of curvature satisfying (2), except
fha.t in the steady state P, also depends on z. The itwo mass
flows are coupled with the liquid temperature at the interface,

T(z,rv), which in turn determines the vapor pressure of the liquid,

p. The local condensation rate -Ti_z& is given by the gas kinetic
formula
an, am, _ o (P _-p) (16)

dz 4z \RT/2n M

The numerical factor o =1 includes both the probability of condensation
of an impinging vapor molecule, and the "roughness" of the meniscus
interface formed on the capillary structure. Equation (16) also
applies for surface evaporation, but not for boiling evaporation,
i.e., the formation of vapor bubbles within the capillary structure.

We now discuss the transport of energy, If 3 is the energy flux,

then in the steady state and in the absence of sources, conservation
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of energy requires

vg=0 (17)

The convective and conductive contributions to the steady state

heat flux are given by

Q= hev - kT (18)

where h is the specific enthalpy of the fluid and k the thermal
conductivity of the local medium. Net heat transport due to
rediation ordinarily makes a negligible contribution in a heat pipe

and it is therefore neglected. The total axial heat transport,

z), is r

z) = fop q (z,r)2madr (19)

The desired approximation to (19) follows from a definition of the

heat pipe regime, The device is operating in the heat pipe regime

when, though the heat flow may be very large, the axial and radial
temperature gradients throughout are very small, excepting only the
radial temperature gradient in the container wall and wick, Using
the axial component of (18) in (19), assuming the heat pipe regime
prevails, so that axial conduction terms are small compared to
convective terms, we have

T r
v W
Q(z) = Ib h p v 2mrdr + IKV h p v, 2mrdr (20)

The specific enthalpies of vapor and liquid depend on temperature

~2)-




and are related by

hv(T) =h Z(T) + L(T) (21)

where L(T) is the heat of vaporization at temperature T. The vapor
reglon is at nearly uniform tempersture so hv can be taken out of
the first integral of (20). If we define a mean specific enthalpy

of liquid, h by

z b4

r
- W
h, = J‘rv v, 2mrdr J‘ P }re2nrdr (22)

then using (6), (7), (21) and (22), the expression for Q(z) becames

oz) = [1+ (n-n,)/1] (23)

Here h P is the liquid specific enthalpy at the temperature of the
vapor-liquid interface. Since .|(h [ﬁ Z)/L|<AT/ (L/c !,) , where AT
is the radial temperature difference across the wick and ¢ P is the
specific heat of the liquid, and for liquids L/c £~103°K, the bracketed
quantity will differ negligibly from unity in any reasonable case,
Thus finally we have the samewhat obvious conclusion that the axial
transport of energy is essentially entirely accomplished by the

vapor convection of latent heat of condensation:
az) = L1 (z) (24)

The heat pipe is coupled to the external enviromment through the

22w




net rate of heat addition per unit length of pipe, H = H (z,TP,Q,).
As indicated, H may depend on: z explicitly, vhen heat is added
with a known distribution, as might be the case with electron
bombardment or induction heating of the pipe surface; TP = (z ,rp),
the temperature of the external surface of the pipe, as in the
case of radiation or conduction to a reservoir of specified
temperature; and Q = Q(z), as in the case of heating or cooling
using parallel forced convection by an external fluid. In any
case g prescription of the environment determines H as a known
function of its arguments. Applying Gauss' theorem to (17) in

a cylinder of radius r, and length dz, and using (19), gives

daz

ag(z) = - 2“qu1~ (z,rp) = H(Z,TP,Q) | (25)

The radial heat flux through the container wall é.nd wick to
the vapor-liquid interface in the heat pipe regime is found by
applying Gaeuss' theorem to (17) in an annulus, rp)'r;rv , with
~thickness dz. Using (18) and (25), one may obtain the following
relation:

dT(z,r) _ oT(z,r 3
ore kL - ok —i—a—lar . [1+ (B, hz)/L] (26)

v b
The bracketed quantity again differs negligibly from unity, implying

that convection contributes little to the radial transport of energy
through the wick, The temperature at the outside of the container

and the vapor-liquid interface are thus related by the standard result
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for radial thermal conduction in a composite cylinder:

T, =T, * H/K (27)

where

'l‘p = T(z,rp) 3 T, = T(z,rv)

B

r
1_1 (L 2 P 4
k=5 G & = ¢ o)
D W W v

The equations (2), (10), (16), (24), (25), (27) and one of
(12), (13) or (15) as appropriate, provide a basis for the quantitative

calculation of heat pipe properties.

6., Solution of the steady-state equations

Rather accurate approximete solutions of the equations of the
preceding section can be obtained fairly simply. In the heat pipe
regime the temperature is nearly uniform throughout the whole vapor
space and the distribution of axial heat and mass flows differ little
from what they would be if the vapor temperature was exactly a
constant, T, . If (27) is solved for Tp , we may express H in (25)

as & function of z, Tv and Q.

%% = H(Z’TV>Q) (28)

The heat flows through the two ends of the plipe either are
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negligible or at worst may be known functions of the local vapor
temperature, which we denote by FO(TV) and F !’(Tv) respectively. The
effective average temperature, To , and its associated axial heat

flux distribution, QO(Z) , are then obtained as the solution of

(29)
Qo(o) = Fo(To) 5 Qo( 4@) = F!'(To)

Since this is a two-point boundery value problem on a first order
differential equation it can in general only be satisfied for

particular values of T In a physically well defined problem

o.
H(z, To Qo) will depend explicitly on T,, and the value of T,

satisfying (29) will be unique.

With this good approximation to the heat flux we may obtain the

vapor and liquid mass flows from (24) and (7)

i (2) = - @,(2) = § (2)/L(T,) (30)

The vapor mass flow in turn determines the distribution of pressure
in the vapor, to within a constant, by integration of (12), (13) or
(15) as appropriate., Using ﬁv(z) and pv(z) in (16) then determines
the vapor pressure of the liquid to within an additive constant.

Consistent with the accuracy of the calculation, this constant may

be taken as p(To). Since the vapor pressure is a known function
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of the liquid surface temperature, this determines Tv(z). The self-
consistency of the approximate calculation is verified if the total
variation of Tv(z), found in this way, is smell compared to T,.
Finally, the liquid mass flow determines the axial distribution of

pressure in the liquid by integration of (10). Throughout the fore-
going all the temperature dependent properties, with the exception

of the vapor pressure, are sufficiently slowly varying that they may

be taken as constants evaluated at To.

We now obtain the total pressure and temperature variations
along a heat pipe for a particular, but rather commonly met case:
constant heat addition along the evaporator, and constant heat

removal along the condenser. Thus

Q) = T (2) =< (32)
2o 3 48 2€<y

where ’e’e is the length of the evaporator and Qe is the total heat
input to the evaporator. Integrating (12) and (13), neglecting the

term in Ri in the former, and assuming Py is constant in both, gives
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r
e
mp, L ; R &1
tp, = p (2)-p (0) =J , (32)
(1-4/7°)Q
8perL

.
Fran (16) one obtains

zQE\/RTO/2nM

ge(z-ze)L oar_

tp = p(T,(2)) - »(T (0)) = ap, - (33)

It is a requirement for the heat pipe regime that both Apv and Ap

be significantly smaller in magnitude than p(To). For the small
pressure differences occurring in the heat pipe regime the Clapeyron-
Clausius equation may be used to calculate the temperature difference:

RT 2

AT, =T (1) - T (0) = m‘omf?‘ (34)

The liquid pressure differences, found by integrating (10), is

b1} ch 2

tp, = D,(8) - 2,(0) = p,Esing + 5 (35)

2 2
2n(rw -r v)p er’L

As an illustration of the magnitudes of pressure and temperature
drops typically encountered, we cite an experimental horizontal liguid
sodium heat pipe which was reported in the original description of

these devices.l The relevant specifications are given in the left
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column and various derived properties in the right:

Q, = 500 wetts mv(ze) = 0.1 gm/sec
T, = 920°K »(T)) = 50 mm Hg
4 =90 m Apv = ~0,2 mm Hg
ze = 13 am Ap = -0,5 mm Hg
r, = .64 cm Apz Y 2m Hg
. .80 em AT = -0.7 K

r =,012 em

The main features of a working heat pipe are evident here: The
transport of considerable heat is accomplished by the circulation

of a small amount of working fluid; this circulation requires but
small pressure differences; and the accompanylng temperature
difference is so small that its precise magnitude is not of importance

in practical applications.

7. Maximum heat flux

thile the thermal conductance of a heat pipe is very large
there are, however, limitations on the magnitudes of both the total

and local energy fluxes,

The total axial heat transport may increase only if the force
of capillary origin can sustain the required circulation of fluid.
As previously noted, the maximum difference in pressure bhetween vapor

and adjacent liquid that can be supported by surface tension in the
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capillary structure is (2y cos 6)&0. It is therefore necessary that

p(z) - p,(2) ¢ 2ycos @ ;5 0gzg4 (36)

r
c

In the general the largest pressure difference will occur at the
beginning of the evaporator section, z = O, If the heat pipe has been
prepared with a fully saturated wick, the vapor-liquid interface
meniscus will have large radius of curvature at the terminal end of
the condenser and, therefore, pv(z)'3 pz(z). Thus if (36) is
satisfied at z = o, it will be satisfied for all z.

For the particular case of uniform heat addition and
removal we may use (32) and (35) together with the preceding
remarks to write down explicitly the limiting condition on the

total axial heat flux:

(
ll-T]vZQe \ Rr <4 1
o
mp. e L
viv g . b'ﬂzQeJ& < 2cose;$
*pghsin gt 2n(r§ - ri)plgri L Te (37)
2
_....h__._(l-h/ )5 R, > 1
80 L T
Pty /

There is a further limitation on the local radial heat flux

in the evaporator section of the heat pipe. The liquid in the interior
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of the wick here is necessarily superheated., We should therefore
expect that the limitation will be closely connected with the
conditions for the onset of boiling in the capillary structure and
the quantitative properties of the subsequent evaporation and heat
transfer. The problems here are more complex even than those
encountered in pool boiling of liquids, for in addition to the local
limitations of boiling heat transfer, the undoubtedly deleterious
interaction of boiling with the overall circulation of liquid
throughout the capillary structure will be nmpbrtant. There is no
generally useful experimental information available yet on this

problem.

We can, however, give a copservative criterion for the
nonoccurrence of boiling. The onset of boiling may be characterized
by a critical bubble radius of curvature, ry
nature and geometry of the interface where bubbles nucleate., If the

» Which depends on the

difference between the pressure of the vapor in the bubble and the
pressure in the surrounding liquid is less than 2y/rb, then the bubble
will collapse. In a nucleating bubble the pressure in the vapor
cannot exceed p(T(z,r)), the equilibrium vapor pressure of the liquid
at the local temperature. Furthermore, in the capillary structure

I

b cannot exceed rcsece . Thus as long as

B(2(z,7)) - p (z,r) § =L (38)

bubbles cannot grow beyond the critical size, and true boiling will not
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occur. Of course, there may indeed be no boiling under more severe

conditions than given by this criterion.

8. Multi-component fluids

Ve consider the steady-state behavior of a heat pipe in which
a mixture of liquids rather than a single pure compound is used as

the working fluid. Conservation of mass again requires that
i (2) + 1 (2) = 0 (7)

The mass of éach component individually must also be conserved.
Letting fv(z) and fz(z) be the mass fractions of some designated

component in vapor and liquid phases respectively, then

£,(z)m (2) + £ (2) m(z) = O (39)

Using (7) to eliminate ﬁz(z)

[£,(2) - £(2)] #,(2) = 0 (ko)

This can be satisfied only if ﬁv(z) = 0 or fv(z) = fz(z). The first
alternative implies no local‘refluxing. If we assume that the steady
state is close to thermodynamic equilibrium then the second alternative
can only be met in one of three special ways: (a) £, = f, =1, that
is, only the pure component is present locally in both phases; (v)

fv = fe = 0, that is, the designated component is locally totally

absent; (c) we are dealing with the very special case of a constant

-31-



boiling mixture, which may in fact be regarded as constituting a new
pure component., If none of the foregoing cases holds, then gross

local thermodynamic non-equilibrium is implied.

If the heat pipe is originally charged with homogeneous
liquid mixture, then in the early transient heat transport, the
vapor leaving the evaporator will be richer in the more volatile
components than the returning liquid, which thus tends to concentrate
the less volatile components in the evaporatog and the more
volatile components in the condenser, Now, there is an essentially
completely fractionated steady-state distribution of components
which is consistent with this trend, with the previously enumerated
near-equilibrium alternatives, and ﬁith the heat pipe dynamics which

reoguire very small pressure gradients throughout. This steady state

consists of a series of segments each containing a pure component which

is refluxing as an independent heat pipe. The components are arranged
in order of increasing volatility with the most volatile at the
terminal end of the condenser, The temperature distribution forms

a series of plateaus, with the plateau temperatures decreasing in
order of increasing volatility of the local component, in such a way
that the pressure within the vapor is nearly constant throughout the
~entire pipe. Between the segments there are short transition zones

of rapidly varying temperature within which there is no refluxing,

.the entire axial heat transport occurring by ordinary thermal conduction,

-32-



mainly through the container wall and wick. Along each temperature
transition zone the stagnant two-camponent liquid and vapor phases
very in equilibrium concentrations in a way consistent with constancy
of total vapor pressure. Since the distribution of density is not
uniform, gravitationally induced convection, particularly of the

vapor phase, may modify this distribution considerably.

If the heat pipe contains some non-condensible gas of
low solubility in the working fluid, the foregoing applies equally
well, It has been demonstra.tedl that in the steady state the gas is
driven to the terminal end of the condenser where it forms a stagnant
zone. The length of this zone is proportional to the mass of gas
and to the mean temperature in the zone, and is inversely proportional
to the pressure of the vapor in the refluxing section of the heat
pipe. This featyre might be useful. In such a heat pipe the working
length of the condenser iﬁcreases as the heat input to the evaporator

is increased.

9. Optimal heat pipes

A heat pipe will commoniy be required to transport the largest
possible amount of heat, subject to whatever subsidiary constraints
arise in the particular application. In this case the maximm heat

flux criterion (36) applies, in the form

&pz - op, - EXS%E_Q =0 (41)




If the subsidiary constraints do not involve the capillary pore size,

r,, then its optimum value may be deduced from (41) alone. According

to (10) the viscous contribution to Ap , is inversely proportional

to ri . The standard extremizing procedure then yields and the result
that r, should be so chosen that the viscous contribution to Ap P

is one-half the magnitude of the capillary pressure temm,

(2ycos e)/rc. For example, in the case of uniform heat addition and

removal, Ap P is given by (35), and the optimum choice of r, is

) o, Q8
) lm(ra - ra)p el y cos ©
L viTe

(k2)

r
c

If the hydrostatic contribution to Ap P) is absent, and if the

ratio r v/rw is not constrained by the subsidiary conditions, then

the optimum value of r v/rw is 2/3. This follows by noting that

if Ap is obtained either from (12) or (13) as appropriate, and

the optimal value of r_ is used for Ap 4 in (41) then the greatest

heat transport corresponds to the maximum value of r::(rs - r2v). Under

these transport is found to be

1/2
é m‘a Ly cos © e p.p
W v© 4 ‘R <& 1
34 3b’ﬂvT]L > Tr
Q =<
2 2 2 \Y3
b L [ 2p p LY cos™8
3 2 3 R, >>1 (43)
_ (n"-k)oen,

-3l




If, for example, & fixed total volume of wick is distributed in a
uniformly heated eveporator, so as to minimize the liquid viscous
DPressure drop in this section of the pipe, the cross-sectional

area of wick ‘should be proportional to vz » and the pressure drop

is 8/9 of that of the wick of constant thickness.
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